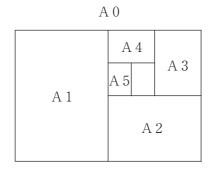
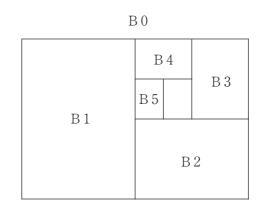

令5 中学校・高等学校数学 (5 枚のうち1)

(解答はすべて、解答用紙に記入すること)


- I 次の各問いに答えなさい。解答は、答えのみでよい。
- (1) 2023 と 1003 の最大公約数を求めなさい。
- (2) 10個の正方形があり、1辺の長さの平均値は6cm、分散は4である。この10個の正方形について、面積の平均値を求めなさい。
- (3) 座標平面において、点 (1, 1) を中心とし、直線 l: 2x-y-11=0 に接する円を C とするとき、次の問いに答えなさい。
 - ① 円 Cの方程式を求めなさい。
 - ② 円 C と直線 l の接点の座標を求めなさい。
- (4) 1辺の長さが1の正六角形 ABCDEF について、内積 AC・AD を求めなさい。



(5) 次の極限値を求めなさい。

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$$

- (6) 紙の大きさを表すA判とB判は次のように定められている。あとの ① 、② に当てはまる値を、四捨五入して整数で答えなさい。ただし、 $1.414 < \sqrt{2} < 1.415$ 、 $1.732 < \sqrt{3} < 1.733$ 、 $2.449 < \sqrt{6} < 2.450$ である。
 - A判 隣り合う辺の長さの比が $1:\sqrt{2}$ で、面積が 1m^2 の長方形の紙の大きさを A 0 判といい、長い辺が半分になるように次々と半分に切っていき、できたものを A 1 判、A 2 判、A 3 判、…… という。
 - B判 隣り合う辺の長さの比が $1:\sqrt{2}$ で、面積が 1.5m^2 の長方形の紙の大きさをB0判といい、長い辺が半分になるように次々と半分に切っていき、できたものをB1判、B2判、B3判、…… という。

コピー機で A 5 判の紙全体を A 4 判の大きさに拡大しようと思い、倍率を 200%に設定して複写したところ、A 4 判ではなく、A 3 判の大きさに拡大されてしまった。A 5 判の紙全体を A 4 判の大きさに正しく拡大するためには、倍率を ① %に設定する 必要があった。また、B 4 判の紙全体を A 4 判の大きさに正しく縮小するためには、倍率を ② %に設定すればよい。

令5 中学校・高等学校数学 (5 枚のうち 2)

(解答はすべて、解答用紙に記入すること)

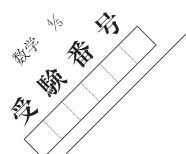
II 地震の規模を表すマグニチュード M は、地震が発するエネルギー E(単位はジュール)を使って、一般的に次の式で定義される。 $\log_{10}E = 4.8 + 1.5 M$

このとき、あとの問いに答えなさい。ただし、 $\log_{10}2 = 0.3010$ 、 $\log_{10}3 = 0.4771$ とする。

- (1) マグニチュード5の地震のエネルギーは、マグニチュード3の地震のエネルギーの何倍であるか求めなさい。解答は、答えのみでよい。
- (2) マグニチュードが1増えると、地震のエネルギーはおよそ何倍になるか。次のア~カから最も近いものを1つ選んで、その符号を書きなさい。解答は、答えのみでよい。

ア 1.5 倍 イ 3.2 倍 ウ 15 倍 エ 32 倍 オ 150 倍 カ 320 倍

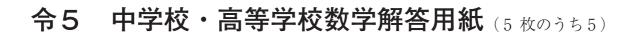
(3) 1995年兵庫県南部地震のマグニチュードは7.3であった。2010年チリ地震のエネルギーが兵庫県南部地震のエネルギーの180倍であるとするとき、チリ地震のマグニチュードを求めなさい。ただし、四捨五入して小数第1位まで求めること。


- 皿 数列 $\{a_n\}$ の初項から第n項までの和 S_n が $S_n=2a_n-2^n$ で表されるとき、次の問いに答えなさい。
- (1) 初項 a_1 を求めなさい。また、 a_{n+1} を a_n の式で表しなさい。
- (2) 一般項 a_n を求めなさい。
- (3) $T_n = S_{n+1} 2S_n$ とするとき、 $T_1 \times T_5 \times T_9 \times \cdots \times T_{4n-3}$ を求めなさい。

- IV 2つの関数 $f(x) = x^3 2x^2$ 、 $g(x) = 2x^2 + ax + b$ について、次の問いに答えなさい。ただし、a、b は定数とする。
- (1) 関数 f(x) の極値を求めなさい。
- (2) 2つの曲線 y=f(x)、y=g(x) は、x 座標が p(0< p<2) である共有点 P をもち、点 P において共通の接線をもつ。さらに、曲線 y=g(x) が点 (2,0) を通るとき、a、b の値を求めなさい。
- (3) a、bは(2)で求めた値とする。2つの曲線 y=f(x)、y=g(x) で囲まれた部分の面積 S を求めなさい。

令5 中学校・高等学校数学解答用紙 (5 枚のうち3)

総計	


_					
	(1)				•
	(2)		cm^2		
	(3)	1		2	
I	(4)				
	(5)				_
	(6)	1		2	I
	(1)		倍		
	(2)				
II					
	(3)				
	(0)				
					II

令5 中学校・高等学校数学解答用紙 (5 枚のうち4)

(1)	
(2)	
(3)	

Ш

%5

	(1)	
IV	(2)	
	(3)	

IV	

総計

200

令 5 中学校 • 高等学校数学 模範解答

(1) 17 (2) 40 ${\rm cm}^2$ (3)1 $(x-1)^2 + (y-1)^2 = 20$ (5, -1)(4) (5)2 (6) 1 141 2 82 1000 倍 (1)

6 0

(2) I

 Π

兵庫県南部地震のエネルギーをE, チリ地震のマグニチュードをMとすると,

兵庫県南部地震について,
$$\log_{10} E = 4.8 + 1.5 \times 7.3$$
 ……①

チリ地震について,
$$\log_{10} 180 E = 4.8 + 1.5 M$$
 ……②

②-① \sharp \mathfrak{h} , $\log_{10} 180 E - \log_{10} E = 1.5 (M - 7.3)$

$$\log_{10} \frac{180 E}{E} = 1.5 M - 10.95$$

$$\log_{10} 180 = 1.5 M - 10.95$$

$$\log_{10}(10 \times 2 \times 3^2) = 1.5 M - 10.95$$

 $1 + \log_{10} 2 + 2\log_{10} 3 = 1.5M - 10.95$

$$1 + 0.3010 + 2 \times 0.4771 = 1.5 M - 10.95$$

(3) 1.5M = 13.2052

$$M = 8.80 \cdots$$

小数第2位を四捨五入して、求めるマグニチュードは8.8

令 5 中学校・高等学校数学 模範解答

(1)	$a_1 = S_1 = 2a_1 - 2^1$ より $a_1 = 2$ また, $a_{n+1} = S_{n+1} - S_n = 2a_{n+1} - 2^{n+1} - (2a_n - 2^n)$ $= 2a_{n+1} - 2a_n - 2^n(2 - 1) = 2a_{n+1} - 2a_n - 2^n$ よって, $a_{n+1} = 2a_n + 2^n$ ①
(2)	①の両辺を 2^{n+1} で割ると, $\frac{a_{n+1}}{2^{n+1}} = \frac{a_n}{2^n} + \frac{1}{2}$ $b_n = \frac{a_n}{2^n} とおくと,$ $b_{n+1} = b_n + \frac{1}{2}$ ゆえに,数列 $\{b_n\}$ は初項 $b_1 = \frac{a_1}{2} = 1$,公差 $\frac{1}{2}$ の等差数列であるから, $b_n = 1 + (n-1) \cdot \frac{1}{2} = \frac{n+1}{2}$ よって, $a_n = 2^n b_n = (n+1) \cdot 2^{n-1}$
Ⅲ (3)	$S_{n} = 2a_{n} - 2^{n} \qquad \text{\downarrow} S_{n} = 2(n+1) \cdot 2^{n-1} - 2^{n} \\ = n \cdot 2^{n} + 2^{n} - 2^{n} = n \cdot 2^{n}$ $T_{n} = S_{n+1} - 2S_{n} \\ = (n+1) \cdot 2^{n+1} - 2n \cdot 2^{n} \\ = 2^{n+1}$ $T_{1} \times T_{5} \times T_{9} \times \dots \times T_{4n-3} = 2^{2} \times 2^{6} \times 2^{10} \times \dots \times 2^{4n-2} \\ = 2^{2+6+10+\dots+(4n-2)}$ $= 2^{n}$ $2 + 6 + 10 + \dots + (4n-2) = \frac{1}{2} \cdot n\{2 + (4n-2)\} \\ = 2n^{2}$ $1 \times T_{5} \times T_{9} \times \dots \times T_{4n-3} = 2^{2n^{2}} = 4^{n^{2}}$

令 5 中学校 • 高等学校数学 模範解答

			, tī		<u> </u>	<u> </u>	1 -1 1	仪奴子		3件合	
		f'(x) =	$3x^2-4x$								
			: x(3x - 4) : 0とすると		4						
		f'(x) =	: Uとすると	x = 0	, _ 3	<i>A</i>]			
	(1)	х		0		$\frac{4}{3}$					
	(1)	f'(x)	+	0	_	0	+				
		f(x)	7	0	7	$-\frac{32}{27}$	7				
		x = 0	のとき,	極大 極大値 0	$x = \frac{4}{3}$	極小 のとき,	極小値	$-\frac{32}{27}$			
IV	(2)	点 Pで f(p) = f(p) = また f f'(p) = ②を① さらに、 8 + 2(3 $p^3 - 5p$ (p-1) 0 < p <	共通の接続 $g(p)$ から $g(p)$ から $b=p^3-4$ $f(x)=3x^2$ $f($	限をもつた $f'(p) = p^3 - 2p$ $p^2 - ap$ -4x , $5a^2 - 4a$ 8 $p - \cdots$ (三整理する + 4 p^2 · · · · · · · · · · · · · · · · · · ·	めの必要・ $g'(p)$ が。 $p^2 = 2p^2 + \dots $ ① $g'(x) = 4$ $p = 4p + 2$ $p = 4p^2 + 3$	十分条件に 成り立つ。 - ap + b x + a なの a より	ま, ことである より かで				
	(3)	区間 $1 \le$ $S = \int_{1}^{2} \{g$ $= \int_{1}^{2} \{(G + G)^{2} \} dG$ $= \int_{1}^{2} (G + G)^{2} dG$) から、2 目 $x \le 2$ で $x \le 2$ $x \ge 2$	$f(x) \le g(x)$	x) である - 2x²)}d dx	ль, x		eくと図のよう = g(x)	になる。		2 x

IV

5 0