The Best Aircraft

Group 7

PURPOSE

To find the best shape of a model airplane which can fly a long distance.

Keywords

$$A = \frac{b}{a} \quad S = ab$$

$$A = \frac{b^{2}}{S}$$

Degree of length and narrowness of the wing

Keywords

• Lift (L) The force which moves a body up.

• **Drag (D)** The force which prevents a body from moving.

Keywords

Lift-drag ratio (L/D)

The ratio to lift to drag.

X

$$\frac{\mathsf{x}}{\mathsf{y}} = \frac{\mathsf{L}}{\mathsf{D}}$$

Keywords

Camber

The puff of the wing.

Hypothesis

$$L = C_L \times \frac{1}{2} \rho V^2 \times S$$

$$D = \frac{L^2}{\frac{1}{2}\rho V^2 \times \pi \times b^2 \times e} + C_{D0} \times \frac{1}{2}\rho V^2 \times S$$

$$\frac{L}{D} = \frac{\frac{L^2}{\frac{L^2}{\frac{1}{2}\rho V^2 \times \pi \times b^2 \times e}} + C_{D0} \times \frac{1}{2}\rho V^2 \times S}{\frac{1}{2}\rho V^2 \times \pi \times b^2 \times e} - \frac{C_L^2}{\pi e}$$

Hypothesis

By relationship between arithmetical mean and geometrical mean

$$\frac{L}{D} = \frac{1}{\frac{C_{Do}}{C_L} + \frac{C_L}{\pi e A}} \leq \frac{1}{2\sqrt{\frac{C_{DO}}{C_L}} \times \frac{C_L}{\pi e A}} = \frac{\sqrt{\pi e A}}{2\sqrt{C_{DO}}}$$

Hypothesis

The bigger aspect ratio is, the longer the model airplane flies.

Method

- **1.** Make three types of model airplanes. (Aspect ratio…3.23/6.11/8.91)
- 2. Put catapult on a chair horizontally. (Height...38cm)
- 3. Release each airplane 5 times.

Result

Aspect ratio	Lift coefficient	Drag coefficient	Flight distance(cm)
3.23	0.0590	0.0046	486
6.11	0.0607	0.0043	542
8.91	We have omitted due to unst	440	
8.91 (+piano wire)	0.2501	0.0149	640

Study

- 1. The biggest wings without piano wire didn't fly well because they bent.
- The strength of the wings decreased very much because the wingspan was too long.
 - 2. The flight distance increases when we make the aspect ratio larger.

Hypothesis

When the wings bend ...

Hypothesis

Elastic buckling

A phenomenon in which an object changes its shape when under pressure.

Hypothesis

- P_K Buckling load n Terminal coefficient
 E Young's modulus π Circular constant
- I Geometrical moment of inertia **b** Wingspan

$$P_{k} = \frac{nEI\pi^{2}}{l^{2}}$$

Hypothesis

Compressive stress

When an object bends, this force arises from inside the object to maintain balance.

Hypothesis

- 6 Compressive stress
 M bending moment
- y_{MAX} Distance from neutral axis to the end of the compression side
 - I Geometrical moment of Inertia

$$\delta_{MAX} = \frac{M \times y_{max}}{I}$$

Hypothesis

Conditions for the wing not buckling.

$$\delta_{\text{MAX}} \leq \frac{P_{\text{K}}}{S_{\text{S}}}$$

Max compressive stress is less than the buckling stress.

Method

- 1. Fix a wing base to 2 stands horizontally.
- 2. Connect the wing to a spring balance and gradually increase the load.
- 3 Measure the force at the moment that the wing buckles.

Result

	Shape of section(m)			Theoretical value (N·m)	
1	t=0.018	h=0.005	Cr=0.078	0.0018	0.011
2	0.017	0.008	0.076	0.0075	0.016
3	0.016	0.010	0.076	0.0150	0.026
4	0.029	0.008	0.078	0.0075	0.009
5	0.028	0.011	0.077	0.0210	0.022
6	0.025	0.016	0.072	0.0630	0.034
7	0.040	0.010	0.079	0.0150	0.019
8	0.040	0.006	0.080	0.0031	0.0066
9	0.038	0.018	0.074	0.0900	0.031

Study

- 1. The bigger the camber is, the less wings performs in the buckling test.
- 2. The bigger the camber is, the bigger the parasite drag is.
- 3. Experiment value is smaller than theoretical value for large cambers.

CONCLUSION

Max aspect ratio

$$A_{MAX} = 2 \left\{ \frac{\pi^2 EI^2}{S_S mgy_{max}} \right\}^{\overline{3}}$$

CONCLUSION

L/D max and Aspect ratio

Wing type	Aspect ratio	L/D max
Styrene paper	7.4	8.6
Styrene paper (+piano wire)	7.4	8.9
Copper (Young's modulus×700)	105	8.3

CHALLENGES FOR THE FUTURE

1. Consider lift from tail wing.

2. Consider parasite drag coefficient of other parts.

SPECIAL THANKS

Adviser

Mr. Koike, a professor at Osaka Institute of Technology.

Cooperation in calculation

- Classmate Mr. Kotobuki
- Wolfram Alpha
- Smartphone application
 Electronic calculatorEQ7

REFERENCES

- 1 Nakamura Kanji , Aerodynamics to understand by a color illustration "super" guide (2015, Sbcreative)
- 2 Basic knowledge of the machine design engineer (2016,RE Co,.Ltd)
- 3 Kentiku Kouzou, "the structural mechanics" that a building student learns (2012, Kentiku kouzou)
- **4** The basics of permissible stress degree (Kindai University, Department of architecture)
- 5 JIKO, Information site for CAE engineers (2016, JIKO)

Keywords

- L Lift D Drag
- V Speed ρ Density
- S Wing area b Wingspan
- C_L Lift coefficient
- **C**_D Drag coefficient
- A Aspect ratio
- e Span efficiency coefficient
- π Circular constant

Study

Relations of aspect ratio and the flight distance

Complements

The distance from a threshold to a point of action of the power

M Bending moment x 基準点から力の作用点までの距離 F Force

$$M = Fx$$

The power which turns an object

Complements

The distance from a threshold to a point of action of the power

曲げモーメント
M Bending moment

x 基準点から力の作用点までの距離

F 力の大きさ

Force

M = Fx

物体を回転させる力

The power which turns an object

Complements

There are many point of applications on wing.

Complements

$$M = \int_0^b x \times \frac{mg \cos \beta}{S} \left(\frac{C_t - C_r}{b} x + C_r \right) dx$$

$$+ \int_{b}^{b+kb} x \times \frac{mg \cos \beta}{S} \left(\frac{-C_{t}}{kb} + \frac{C_{t}k + C_{t}}{k} \right) dx$$

Complements

The bending moment which hangs on the wing

Rectangle wing

$$M=\frac{1}{2}Lx$$

Trapezoid wing

$$M = \frac{bmg\cos\beta(C_tk^2 + 3C_tk + 2C_t + C_r)}{3(kC_t + C_t + C_r)}$$

Complements

Geometrical moment of inertia

Strength decided by the sectional form of the object

Complements

I₂ Geometrical moment of inertia

Distance from a middle vertical plane

y 中立面からの距離 dA 微小面積 small area

断面二次モーメント

$$I_2 = \int y^2 dA$$

Complements

Neutral axis

Neither the compression power nor the tension acts.

Complements

statical moment of area I_1 断面一次モーメント 面積 small area

Distance between the bottom line and section of the wing y 断面の底辺からの距離 dA 微小

$$I_1 = \int ydA$$

Complements

Geometrical moment of inertia

Neutral axis is a standard and calculate

Complements

The results of geometrical moment inertia of calculations

Neutral axis

$$y_0 =$$

$$\frac{2 d^2(\sin \theta_1 \tan \theta_1 + \sin \theta_2 \tan \theta_2) + 3dh(\tan \theta_1 + \tan \theta_2) + 3h^2\left(\frac{1}{\cos \theta_1} + \frac{1}{\cos \theta_2}\right)}{6\left(\frac{1}{\cos \theta_1} + \frac{1}{\cos \theta_2}\right)}$$

Complements

The results of geometrical moment inertia of calculations

Geometrical moment of inertia

$$\begin{split} I_2 &= \frac{1}{6}t \, \mathrm{d} \left\{ 2d^2 \sin \theta_1 + 3d(h - 2y_0) + \frac{2}{\sin \theta_1} \left(h^2 - 3hy_0 + y_0^2 \right) \right\} \\ &+ \frac{1}{6}(a - t) \, \mathrm{d} \left\{ 2d^2 \sin \theta_2 + 3d(h - 2y_0) + \frac{2}{\sin \theta_2} \left(h^2 - 3hy_0 + y_0^2 \right) \right\} \end{split}$$

Complements

The results of geometrical moment inertia of calculations

calculate the moment when an elastic bucking occurred

The maximum lift-drag ratio

