
Extraction of lignin from wood and its application

Hyogo Prefectural Kakogawa Higashi High School Science & Math Course Science Research Group 6

Contents

- 1. Motivation & Purpose
- 2. Preliminary experiment
- 3. Experiments 1, 2, & 3
- 4. Conclusion
- 5. Future prospects
- 6. Acknowledgements
- 7. References

1. Motivation & Purpose

- To extract lignin from wood
- To investigate its properties
- To develop a new material with lignin

Contents

- 1. Motivation & Purpose
- 2. Preliminary experiment
- 3. Experiments 1, 2, & 3
- 4. Conclusion
- 5. Future prospects
- 6. Acknowledgements
- 7. References

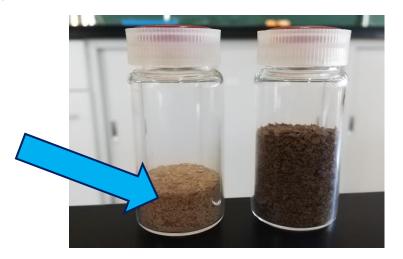
2. Preliminary experiment

Purpose: To extract lignin from wood

Method: Extract lignin from cherry and cedar by using acetic acid.

* Each piece : 50g

Results:

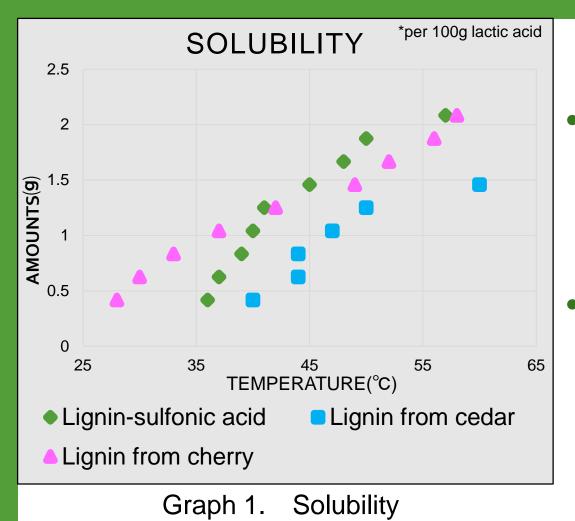


	Amounts [g]	Lignin / Wood [%]
Cherry	2.4	4.2
Cedar	4.8	8.4

Figure 2 Extracts (left : Cherry, right : Cedar)

 Table 1.
 Amount of lignin extracted

Study: Lignin from cherry is paler than lignin from cedar.


Essentially, lignin is said to be white. \rightarrow Lignin from cherry can be considered to be purer.

Contents

- 1. Motivation & Purpose
- 2. Preliminary experiment
- 3. Experiments 1, 2, & 3
- 4. Conclusion
- 5. Future prospects
- 6. Acknowledgements
- 7. References

3. Experiment 1 Purpose: To investigate the solubility of lignin

Hypothesis: Lignin dissolves in acid or alcohol.

The higher the temperature, the higher the solubility.

When the temperature is low, cherry lignin is more soluble than cedar lignin.

3. Experiment 2

Purpose:

To develop a new material using lignin-lactic acid solution

12

Polylactic Lignin acid Absorbs Biodegradable **UV** rays

13

Method:

We heated 3 kinds of lactic acid solution $(A, B, \& C)^*$ to 230 degrees Celsius for 2 hours with a hotplate and let them cool.

* Concentration of lignin A : 0.40 wt.% B : 0.80 wt.% C : 1.6 wt.%

Results:

Figure 3. Products (left : A, right : B)

Figure 4. Product (C)

15

Figure 4. Product (C)

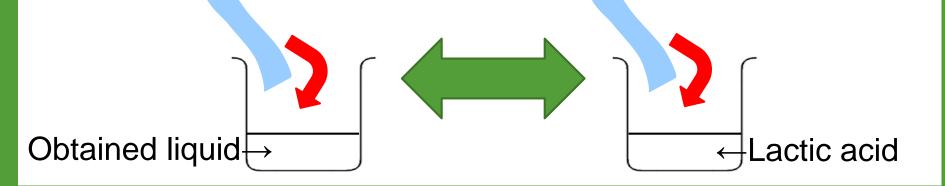
Figure 5. Cross section (C)

16

Study:

How easy to set : A>B>C

We think that the more lignin we add to solutions, the harder they become.


A further experiment

Purpose: To investigate how lactic acid changed into a solid

Method:

We dipped cobalt chloride paper into liquid which we obtained by heating the solution* and lactic acid, and compared the change.

* the solution : lactic acid which lignin-sulfonic acid was dissolved in

Results:

The paper dipped in obtained liquid turned red while the paper dipped in lactic acid did not change.

Figure 6. Results of experiment 3 {upper : lactic acid lower : obtained liquid

Study: Obtained liquid contained more water than lactic acid.

There must have been **dehydration** in experiment 2.

3. Experiment 3

Purpose:

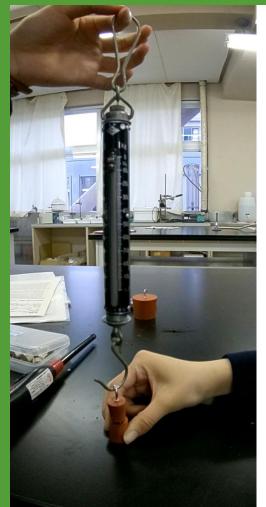
To examine the properties of the product materials

Inspection 1

Method:

Examine whether the product transmits electricity using a dry battery and an electronic music box.

Inspection 2


Method: Heat the product.

Inspection 3 Method: Cool down the product.

Inspection 4

Method:

Ignite a part of the product.

Inspection 5

Method:

- 1. Heat the product and melt it.
- 2. Put it between two rubber stoppers.

25

3. Fix one and pull the other with a spring balance.

* The area of contact was about one square centimeter.

Properties of the product: (1)Non-conductive (2)Becomes soft at around 100°C (3)Becomes fragile 4)Stretches when heated (5) Has ability to glue

Study:

The products have properties similar to thermoplastic resin.

Contents

- 1. Motivation & Purpose
- 2. Preliminary experiment
- 3. Experiments 1, 2, & 3
- 4. Conclusion
- 5. Future prospects
- 6. Acknowledgements
- 7. References

4. Conclusion

• Lignin dissolved in lactic acid.

• The solution solidified when it was heated and then cooled.

Contents

- 1. Motivation & Purpose
- 2. Preliminary experiment
- 3. Experiments 1, 2, & 3
- 4. Conclusion
- 5. Future prospects
- 6. Acknowledgements
- 7. References

5. Future prospects

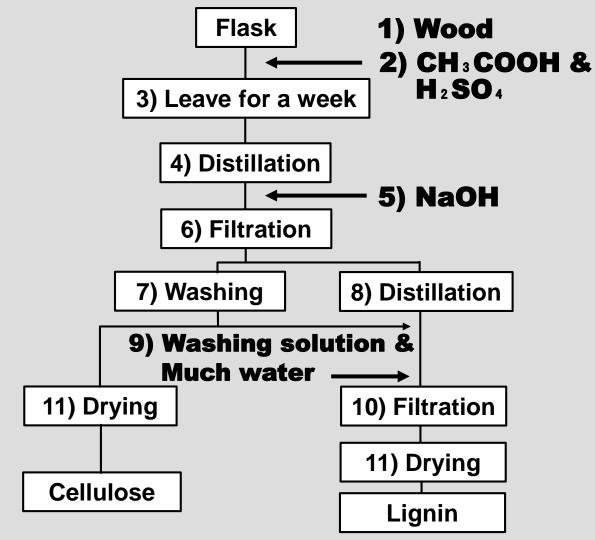
- Advance the survey of lignin and material produced from lactic acid
- Consider how to use the products

Compare!

Polylactic acid

Polylactic acid +Lignin

- NIPPON PAPER INDUSTRIES CO., LTD.
- Kamatani shigyo Co., Ltd.


7. References

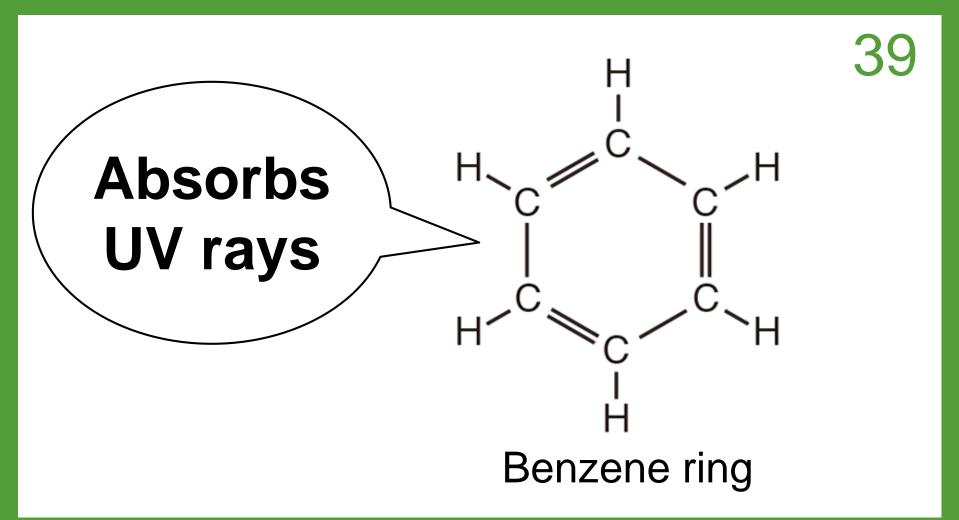
- Extraction of lignin and its utilization year 2007 Wednesday group, https://www.ed.tus.ac.jp/~kaken/studies/07/07_wed.pdf (in Japanese)
- Hayashi Akira, Tachi Isamu : Studies on the Chemical Combination between Lignin and Carbohydrate. Part I, Japan Society for Bioscience, Biotechnology, and Agrochemistry, Vol.30, No.8, pp.442-445, 1956.
- Kawashima Nobuyuki, A Development of Polylactic Acid as Bio-based Polymers, The Society of Synthetic Organic Chemistry, Japan, vol.61, No.5, pp.496-505, 2003.
- Synthesizing Polylactic Acid, http://digirika.el.tym.ed.jp/wp-content/uploads/2014/02/c208-1porinyuusann.pdf (in Japanese)
- Takano Toshiyuki : Prospect of lignin utilization research, Network Polymer, Vol.31, No.5, pp.213-223, 2010 (in Japanese)

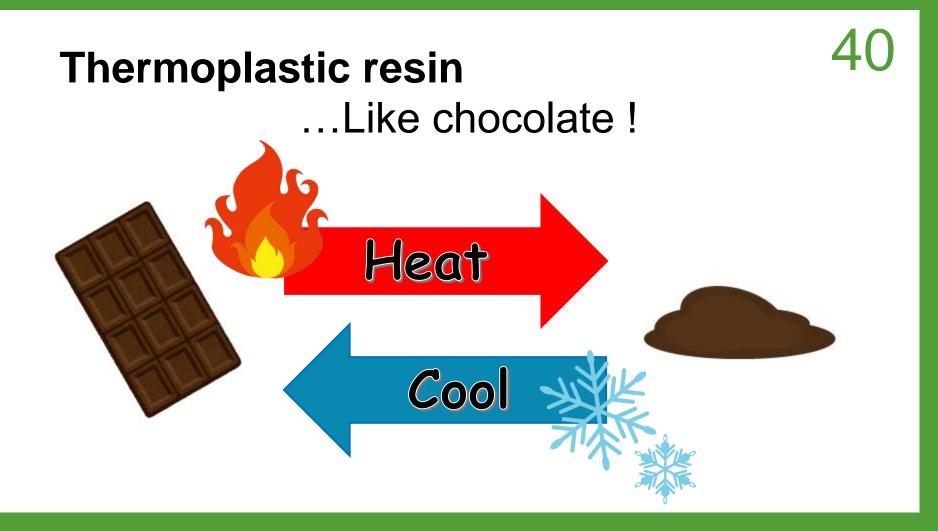
Thank you for listening!

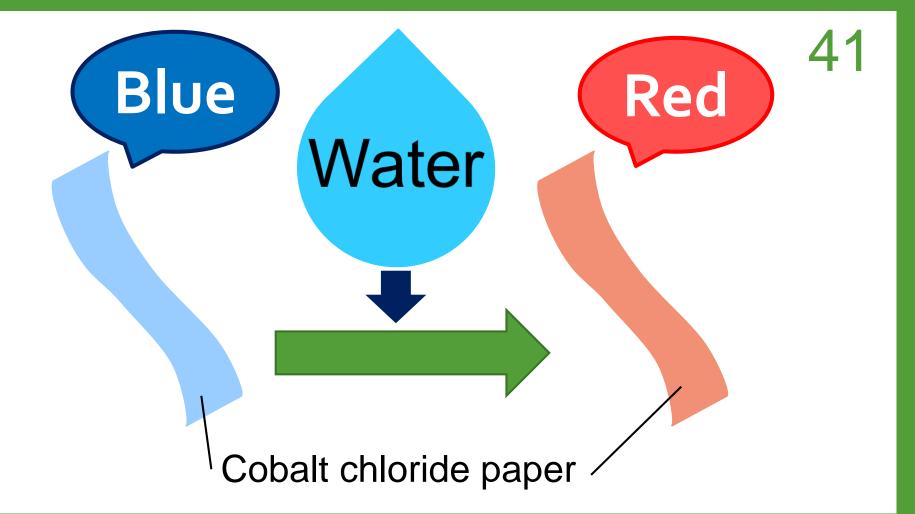
Q& & A

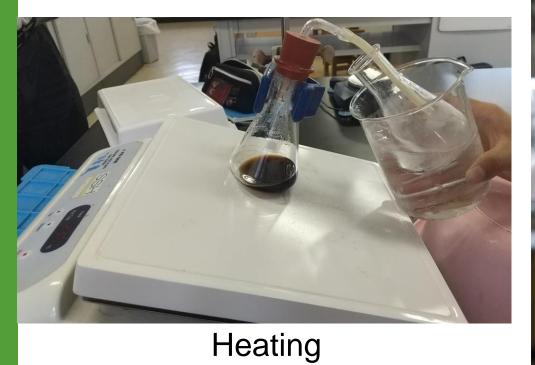
How to extract lignin

36


Distillation




Results:


Liquid	Solubility	Liquid	Solubility	
Acetic acid CH 3 COOH	0	Isopropyl alcohol (CH 3) 2 CHOH	×	
0.10M-NaOHaq	0	Glycerin CH 2 (OH)CH(OH)CH 2 OH	×	
Lactic acid C 3 H ₆ O 3	0	Diethyl ether C4H10O(CH3CH2)2O	×	
Acetone CH 3 COCH 3	\triangle	Acetic anhydride (CH 3 CO) 2 O	×	
Ethylene glycol	\triangle	1-Butanol CH3CH2CH2CH2OH	×	
O: well-dissolved \triangle : little-dissolved \times : non-dissolved				

Solubility of lignin

Obtained liquid

42