Developing biodegradable plastics with gelatin

Hyogo Prefectural Kakogawa Higashi High School Science & Math Course Science Research Group 5

Contents

- 1. Motive and objective
- 2. Pretest / Hypothesis
- 3. Experiment 1 : Durability
- 4. Experiment 2 : Biodegradability
- 5. Summary
- 6. Future ideas

Motive and objective

Current situation • plast

- plastic pollution in the ocean
- biodegradability in the ocean \triangle

Developing plastics which are biodegradable in the ocean

 \triangle :most biodegradable plastics are not biodegradable in the ocean.

4

Motive and objective

How to make gelatin plastics

Pretest

Objective

To make plastics with added substances

Method

Add substances to beakers named A, B, C, and D.

Pretest

A: 5.0 g gelatin + 50 g distilled water +1.2 g calcium carbonate B: 5.0 g gelatin + 50 g distilled water +1.2 g calcium acetate C: 5.0 g gelatin + 50 g distilled water +1.2 g calcium chloride D: 5.0 g gelatin + 50 g distilled water +1.2 g glycerin

8

Pretest

Results			
A: (calcium carbonate)	B: (calcium acetate)	C: (calcium chloride)	D: (glycerin)

Pretest

Only gelatin

Gelatin + calcium carbonate

Hypotheses

The durability of gelatin plastics can be improved by adding calcium carbonate.

Gelatin plastics are biodegradable.

Objective

To investigate the durability of calcium carbonate gelatin plastic

Thickness of sheet (μ m)

Calcium carbonate gelatin plastic ⇒Durability is reduced.

Objective

To investigate whether the plastics are biodegradable

16

Results in sea water

Only gelatin

Gelatin + calcium carbonate

Results in soil

The day we observed gelatin plastic

In sea water ⇒Not sure yet...

In soil ⇒Biodegradable!!

Summary

We succeeded in making gelatin plastics.

When we mix calcium carbonate... It can be made easily. Durability is reduced.

Future ideas

To think about the practicality of plastics we made

To study whether plastics have the ability to biodegrade or dissolve

Future ideas

To experiment using gelatin extracted from fish bones

References

1) Tomoaki Nakatsuka, Hotaka Hara, Yuji Harada, Miki Bito: Development of materials made from agar, Kakogawa Higashi High School, 2018 (in Japanese) 2) Tomohiro Aramoto, Ryusei Korai, Yuichi Takeuchi, Nagisa Mifune, Kenta Morinaga: Development of new materials using agar, Kakogawa Higashi High School, 2019 (in Japanese) 3) Nagano Prefectural Food Industry Research Institute Research Report: Characteristics of edible film consisting of agar and gelatin, 28 p61-64, 2000 (in Japanese)

Thank you for listening!