Origami and Regular Polygons

Hyogo Prefecture, Kakogawa Higashi High School Science \& Math Course Science Research Group1

What is Origami?

Origami is the traditional Japanese art form of paper folding.

Mathematics of Origami

Origami makes it possible to construct geometrical constructions which are impossible to draw when using only a compass and a ruler.

heptagon

Keywords

- "Step" - making one new fold

The number of steps required to fold a regular polygon depends on the folding technique used.

The number of steps required that we calculated, are not necessarily the actual minimum possible.

Goals

- Figuring out how many steps it would take to construct a regular polygon by focusing on how many sides it has

Research Topic 1 - Method

- Folded regular polygons by trial and error

Results

Number of steps required for each regular polygon (3×2^{k} sides)

Results

Number of steps required for each regular polygon (3×2^{k} sides)

Results

Number of steps required for each regular polygon (3×2^{k} sides)

Next topic

Helping theorem
n sides and 2n sides
n sides and $3 n$ sides

Discussion (helping theorem) 11
$(\cos \theta, \sin \theta)$ on circle $x^{2}+y^{2}=1$

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Bisecting motion

Discussion (generalization)

The line

$$
y=\left(\tan \frac{2 \pi}{4 p}\right) x
$$

and the regular polygon with p sides

1 step

The regular polygons with $2 p$ sides

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

Discussion (generalization)

The lines

$$
y=\left(\tan \frac{2 \pi}{3 p}\right) x \text { and } y=\left(\tan \frac{4 \pi}{3 p}\right) x
$$

and the regular polygon with p sides

2 steps

The regular polygons with $3 p$ sides

Conclusion

- By using origami, we can-
-Estimate the number of steps required to construct regular polygons.
-Reduce the number of steps required to construct regular polygons.

References
（1）GeoGebra
https：／／www．geogebra．org／？lang＝ja
（2）Jin Nakagawa 2012
（3）フリーイラスト素材集 ジャパクリップ https：／／japaclip．com／orizuru／

