Origami and Regular Polygons

Hyogo Prefecture, Kakogawa Higashi High School Science & Math Course Science Research Group1

What is **Origami**?

2

Origami is the traditional Japanese art form of paper folding.

Mathematics of Origami

Origami makes it possible to construct geometrical constructions which are impossible to draw when using only a compass and a ruler.

• "Step" – making one new fold

The number of steps required to fold a regular polygon depends on the folding technique used.

The number of steps required that we calculated, are not necessarily the actual **minimum** possible.

Goals

 Figuring out how many steps it would take to construct a regular polygon by focusing on how many sides it has

Research Topic 1 - Method

6

• Folded regular polygons by trial and error

Number of steps required for each regular polygon $(3 \times 2^k \text{ sides})$

Results

Number of steps required for each regular polygon $(3 \times 2^k \text{ sides})$

Results

Number of steps required for each regular polygon $(3 \times 2^k \text{ sides})$

Next topic

Discussion (helping theorem)

$$(\cos\theta,\sin\theta)$$
 on circle $x^2 + y^2 = 1$

$$y = (\tan \varphi)x$$
Folded

$$(\cos(2\varphi - \theta), \sin(2\varphi - \theta))$$

2.0 1.5 Q P 1.0 0.5 0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0 -0.5 R R -1.0 -1.5

			2.0				
		Q	1.5			Р	
			1.0				
			0.5				
-1.5	-1.0	-0.5	0	0.5	1.0 I	1.5 G	2.0
-1.5	-1.0	-0.5 R	0 -0.5	0.5			2.0
-1.5	-1.0			0.5		G	2.0

		2.0				
	Q	1.5			Р	
		1.0				
		0.5	I		G	
-1.5 -1.0	0 -0.5	0	0,5	1.0	1.5	2.0
	R	-0.5	X		s	
		-1.0				
		-1.5				

The line

$$y = \left(\tan\frac{2\pi}{4p}\right)x$$

and the regular polygon with p sides

1 step

33

The regular polygons with 2p sides

The lines

$$y = \left(\tan\frac{2\pi}{3p}\right)x$$
 and $y = \left(\tan\frac{4\pi}{3p}\right)x$

and the regular polygon with p sides

46

The regular polygons with 3p sides

Conclusion

47

- By using origami, we can—
- -Estimate the number of steps required to construct regular polygons.
- -Reduce the number of steps required to construct regular polygons.

(1)GeoGebra https://www.geogebra.org/?lang=ja

(2) Jin Nakagawa 2012

(3)フリーイラスト素材集 ジャパクリップ https://japaclip.com/orizuru/