# The Grain Size Distribution of Sand Deposits along the Kakogawa Coast

### KEYWORDS

### Sand dunes



### They are made by the wind



### PREVIOUS RESEARCH

| Aoki               | Found 2 sand deposits East of             |
|--------------------|-------------------------------------------|
| (1983)             | the Kakogawa River                        |
| Tanaka             | Found an additional 2 sand deposits       |
| (1989)             | West of the Kakogawa River                |
| Fuziwara<br>(2003) | Claimed the sand deposits were sand dunes |

### PURPOSE

### To determine whether previous research reporting the existence of sand dunes in Kakogawa was accurate

### METHOD

(1) Decide on the area to bore using a basic land map and aerial photograph (2) Boring and sampling ③ Particle size analysis using an automatic shaker (4) Make a scatter plot and histogram and check for sand dunes

### SETTING UP THE BORING POINT

- Make a one meter contour diagram by using a 1 to 2500 basic land map
   See geomorphological map in
  - advance for photographic interpretation

# GEOMORPHOLOGICAL MAP OF THE KAKOGAWA FIELD



Reference; Aoki (1983)









# → 4φ Small



### PARTICLE SIZE ANALYSIS

#### (1) Dry naturally

- ② Split each sample into 4 of 50 g
- ③ Measure the weight of samples and mesh
- ④ Divide them by particle size with an automatic shaking apparatus
- (5) Measure the sample's weight of each mesh
- 6 Calculate mean diameter, selective value and skewness

### ANALYSIS

Based on particle size analysis

FORMULAS •Mean diameter  $\bar{x}\phi = \frac{1}{100}\sum f_i \cdot m_i\phi$ •Selective value  $\sigma \phi = \sqrt{\frac{1}{100}} \sum f_i \cdot (m_i \phi - \bar{x} \phi)^2$ •Skewness  $\alpha \phi = \frac{1}{100 \cdot \sigma_{\phi}^3} \sum f_i \cdot (m_i \phi - \bar{x} \phi)^3$  $f_i$ :weight percentage of each particle size  $m_i \phi$  :  $\phi$  medium value of each particle size

|                     | Mean Diameter | Selective value | Skewness |
|---------------------|---------------|-----------------|----------|
| H1                  | 1.46          | 0.65            | -0.58    |
| H2                  | 1.25          | 0.66            | -0.24    |
| H3                  | 1.44          | 0.71            | -0.10    |
| H4                  | 1.47          | 0.62            | -1.29    |
| H5                  | 1.55          | 0.84            | -1.04    |
| H6                  | 1.47          | 0.64            | -0.68    |
| m H7                | 1.11          | 0.89            | -0.47    |
| H8                  | 0.78          | 1.01            | -0.79    |
| H9                  | 1.03          | 0.89            | -0.16    |
| 01                  | 1.38          | 0.84            | -0.62    |
| O2                  | 1.28          | 1.18            | -0.26    |
| O3                  | 1.19          | 0.74            | -0.73    |
| 04                  | 1.39          | 0.91            | -0.38    |
| O5                  | 0.86          | 1.10            | -0.34    |
| Sone Shrine         | 1.87          | 1.29            | 0.04     |
| Sumiyoshi<br>Shrino | 1.93          | 0.42            | 0.27     |



Selective value

SELECTIVE VALUE AND SKEWNESS OF EACH POINT



|    | Mean Diameter | Selective value | Skewness |
|----|---------------|-----------------|----------|
| H1 | 1 46          | 0.65            | -0.58    |
| H2 | 1.10          | 0.66            | -0.24    |
| H3 | 1.44          | 0.71            | -0.10    |
| H4 | 1.47          | 0.62            | -1.29    |
| H5 | 1.55          | 0.84            | -1.04    |
| H6 | 1.47          | 0.64            | -0.68    |
| H7 | 1.11          | 0.89            | -0.47    |
| H8 | 0.78          | 1.01            | -0.79    |
| H9 | 1.03          | 0.89            | -0.16    |
| 01 | 1.38          | 0.84            | -0.62    |
| O2 | 1.28          | 1.18            | -0.26    |
| O3 | 1.19          | 0.74            | -0.73    |
| 04 | 1.39          | 0.91            | -0.38    |
| O5 | 0.86          | 1.10            | -0.34    |
|    | Area A        | Area B          |          |

## • Area A: The environment is inside the bay $\rightarrow$ good selection

•Area B: The environment is outside of the bay  $\rightarrow$  bad selection

• Thus, we can divide the sandbank into two parts  $\rightarrow$  Confirmed Aoki's point with particle analysis

### IN CONCLUSION

- We couldn't make sure of the presence of sand dunes
  There are two pieces of
  - sandbank in the East coast of the Kakogawa River

### REFERENCES

- •Aoki Tetsuya (1983); Changes of palaeogeography in Kakogawa, Ritsumeikan University, Volume 454-456, pp 190~215
- (1989); Kakogawa City History Volume 1, pp 61~67
  Fuziwara Yuzi (2003); Hyougo Kyoiku University Graduation Thesis, pp 1~51
- •Matsumoto Hideaki (1983); Grain size distribution of eolian marine deposit in the coast, pp1~10
- o http://docolog.cocolognifty.com/photos/uncategorized/ 2007/08/26/kc390120.jpg

































