Mathematical modeling of a marble Stirling engine

Team 2

- Constant heat supply \rightarrow oscillation
- There are few mathematical models

Motivation and purpose

- Constant heat supply \rightarrow Oscillation
- There is no model (Not mathematized)

- Explain the oscillation
- Get ideas about how to control the engine

Things found from experiment

Center of gravity and air volume are related

State variables in the mathematical model

2. Oscillation decays over time

3. Frequency is proportional to the square root of the mass

Modeling

Equations for the model

 $\dot{x} = my$

$$c\dot{y} = -\gamma x - \varepsilon y$$

Consideration

calculation

experiment

Oscillation is attenuate

Summary

Variables

→Center of gravity and volume of air Created a mathematical model

- Oscillation attenuates
- Oscillation is connected to the number of marbles

m=4

High

Heat capacity Low

Improve model equations

Improve the device to keep oscillation active

references

1) Kazuhiro Abiko • Takami Tashiro (Report from the Hokkaido Section) Thermodynamic Study of Marble Stirling Engine

2) [Physics] (Sukenshuppan)

Osamu Inomoto,

an associate professor

at Hyogo University of Teacher Education